First time here? Checkout the FAQ!
x
menu search
brightness_auto
more_vert

Hey Can anyone share differentiation formulas of Engineering Maths 1 [MU]

Please Help ! in some days our IA exams are there and i think i haven't studied Much .

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert

i think it's partial differentiation

more_vert

Mujhe Differentiation ke hi chaiye the !

more_vert

ohk fir answer dekhlo

1 Answer

more_vert

In all the formulas below, f’ and g’ represents the following:

  • \(\begin{array}{l} \frac{d(f(x))}{dx} = f'(x)\end{array} \)
  • \(\begin{array}{l}\frac{d(g(x))}{dx}= g'(x) \end{array} \)

Both f and g are the functions of x and are differentiated with respect to x. We can also represent dy/dx = Dx y. Some of the general differentiation formulas are;

  1. Power Rule: (d/dx) (xn ) = nxn-1
  2. Derivative of a constant, a: (d/dx) (a) = 0
  3. Derivative of a constant multiplied with function f: (d/dx) (a. f) = af’
  4. Sum Rule: (d/dx) (f ± g) = f’ ± g’
  5. Product Rule: (d/dx) (fg)= fg’ + gf’
  6. Quotient Rule:
    \(\begin{array}{l}\frac{d}{dx}(\frac{f}{g})= \frac{gf’ – fg’}{g^2}\end{array} \)
Differentiation Formulas for Trigonometric Functions
  1. \(\begin{array}{l}\frac{d}{dx} (sin~ x)= cos\ x\end{array} \)
  2. \(\begin{array}{l}\frac{d}{dx} (cos~ x)= – sin\ x\end{array} \)
  3. \(\begin{array}{l}\frac{d}{dx} (tan ~x)= sec^{2} x\end{array} \)
  4. \(\begin{array}{l}\frac{d}{dx} (cot~ x = -cosec^{2} x\end{array} \)
  5. \(\begin{array}{l}\frac{d}{dx} (sec~ x) = sec\ x\ tan\ x\end{array} \)
  6. \(\begin{array}{l}\frac{d}{dx} (cosec ~x)= -cosec\ x\ cot\ x\end{array} \)
  7. \(\begin{array}{l}\frac{d}{dx} (sinh~ x)= cosh\ x\end{array} \)
  8. \(\begin{array}{l}\frac{d}{dx} (cosh~ x) = sinh\ x\end{array} \)
  9. \(\begin{array}{l}\frac{d}{dx} (tanh ~x)= sech^{2} x\end{array} \)
  10. \(\begin{array}{l}\frac{d}{dx} (coth~ x)=-cosech^{2} x\end{array} \)
  11. \(\begin{array}{l}\frac{d}{dx} (sech~ x)= -sech\ x\ tanh\ x\end{array} \)
  12. \(\begin{array}{l}\frac{d}{dx} (cosech~ x ) = -cosech\ x\ coth\ x\end{array} \)
Differentiation Formulas for Inverse Trigonometric Functions
  1. \(\begin{array}{l}\frac{d}{dx}(sin^{-1}~ x)=\frac{1}{\sqrt{1 – x^2}}\end{array} \)
  2. \(\begin{array}{l}\frac{d}{dx}(cos^{-1}~ x) = -\frac{1}{\sqrt{1 – x^2}}\end{array} \)
  3. \(\begin{array}{l}\frac{d}{dx}(tan^{-1}~ x) = \frac{1}{1 + x^2}\end{array} \)
  4. \(\begin{array}{l}\frac{d}{dx}(cot^{-1}~ x) = -\frac{1}{1 + x^2}\end{array} \)
  5. \(\begin{array}{l}\frac{d}{dx}(sec^{-1} ~x) = \frac{1}{|x|\sqrt{x^2 – 1}}\end{array} \)
  6. \(\begin{array}{l}\frac{d}{dx}(cosec^{-1}~x) = -\frac{1}{|x|\sqrt{x^2 – 1}}\end{array} \)

Other Differentiation Formulas

  1. \(\begin{array}{l}\frac{d}{dx}(a^{x}) = a^{x} ln a\end{array} \)
  2. \(\begin{array}{l}\frac{d}{dx}(e^{x}) = e^{x}\end{array} \)
  3. \(\begin{array}{l}\frac{d}{dx}(log_a~ x) = \frac{1}{(ln~ a)x}\end{array} \)
  4. \(\begin{array}{l}\frac{d}{dx}(ln~ x) = 1/x\end{array} \)
  5. Chain Rule:
    \(\begin{array}{l}\frac{dy}{dx}= \frac{dy}{du}\times \frac{du}{dx}= \frac{dy}{dv}\times \frac{dv}{du}\times \frac{du}{dx}\end{array} \)
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert

oh ohk Thank you

are ha i think partial ka hi chaiye tha ye nahi ! sorry

more_vert

bhai syllabus nahi dekha hai na ?

Ye dekh le Engineering Maths 1 syllabus MU

...